<u>Precalcu</u>	Precalculus Yearlong Mathematics Map								
Resources: /	Approved	from Board of Educat	tion	Assessments: Dist	rict Benchmark Assessments				
	1	Common Core State Standards – Standards for Mathematical Practice:1. Make sense of problems and persevere in solving them.23. Construct viable arguments and critique the reasoning of others.45. Use appropriate tools strategically.67. Look for and make use of structure.8		 Reason abstractly and quantitatively. Model with mathematics. Attend to precision. Look for and express regularity in repeated reasoning. 					
Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary			
N	CN	Perform arithmetic operations with complex numbers.	N-CN.3 (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.	Complex numbers - Conjugate	N-CN.3 Find the conjugate of a complex number	moduli, rationalizing the denominator			
N	CN	Perform arithmetic operations with complex numbers.	N-CN.3 (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.	Complex numbers - Conjugate	N-CN.3 Find moduli and quotients of complex numbers using conjugates	moduli			
Ν	CN	Represent complex numbers and their operations on the complex plane.	N-CN.4 (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.	Complex numbers - Complex plane	N-CN.4 Represent complex numbers on the complex plane in rectangular and polar form	polar coordinates, rectangular coordinates, lemniscate, limacon, rose, cardioid			
N	CN	Represent complex numbers and their operations on the complex plane.	N-CN.4 (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.	Complex numbers - Complex plane	N-CN.4 Explain why the rectangular and polar forms of a given complex number represent the same number	equivalent forms, unit conversions			
N	CN	Represent complex numbers and their operations on the complex plane.	N-CN.5 (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, (-1 + V3 i)3 = 8 because (-1 + $V3$ i) has modulus 2 and argument 120°.	Complex numbers - Complex plane	N-CN.5 Utilize properties to add, subtract, multiply, and conjugate complex numbers	Operations with variables			

Conceptual	Domain	Cluster	Common Core Standard	Content	Skills	Academic
Category						vocabulary
N	CN	Represent complex	N-CN.5 (+) Represent addition, subtraction,	Complex numbers -	N-CN.5 Represent complex computations	
		numbers and their	multiplication, and conjugation of complex numbers	Complex plane	geometrically on a complex plane (Calculus)	
		operations on the	geometrically on the complex plane; use properties of			
		complex plane.	this representation for computation. For example, (-1 +			
			$\sqrt{3}$ i)3 = 8 because (-1 + $\sqrt{3}$ i) has modulus 2 and			
			argument 120°.			
Ν	CN	Represent complex	N-CN.6 (+) Calculate the distance between numbers in	Complex numbers -	N-CN.6 Calculate the distance between numbers	
		numbers and their	the complex plane as the modulus of the difference,	Complex plane	in the complex plane as the modulus of the	
		operations on the	and the midpoint of a segment as the average of the		difference (Calculus)	
		complex plane.	numbers at its endpoints.			
Ν	CN	Represent complex	N-CN.6 (+) Calculate the distance between numbers in	Complex numbers -	N-CN.6 Calculate the midpoint of a segment as	
		numbers and their	the complex plane as the modulus of the difference,	Complex plane	the average of the numbers at its endpoints	
		operations on the	and the midpoint of a segment as the average of the		(Calculus)	
		complex plane.	numbers at its endpoints.			
Ν	VM	Represent and model	N-VM.1 (+) Recognize vector quantities as having both	Vectors	N-VM.1 Represent vector quantities by directed	Distance formula,
		with vector quantities.	magnitude and direction. Represent vector quantities		line segments with appropriate symbols for the	translations,
			by directed line segments, and use appropriate		vectors and their magnitudes	magnitude, vector,
			symbols for vectors and their magnitudes (e.g., v, v ,			component
			v , v).			
Ν	VM	Represent and model	N-VM.2 (+) Find the components of a vector by	Vectors	N-VM.2 Find the components of a vector	vector, component
		with vector quantities.	subtracting the coordinates of an initial point from the			
			coordinates of a terminal point.			
Ν	VM	Represent and model	N-VM.3 (+) Solve problems involving velocity and other	Vectors	N-VM.3 Solve problems involving velocity and	vector
		with vector quantities.	quantities that can be represented by vectors.		other quantities that can be represented by	
					vectors	
Ν	VM	Perform operations	N-VM.4 (+) Add and subtract vectors.	Vectors	N-VM.4	
		on vectors.				
N	VM	Perform operations	N-VM.4a Add vectors end-to-end, component-wise,	Vectors -	N-VM.4a Add vectors using their components	vector, component
		on vectors.	and by the parallelogram rule. Understand that the	Operations		
			magnitude of a sum of two vectors is typically not the			
			sum of the magnitudes.			

Conceptual	Domain	Cluster	Common Coro Standard	Contont	Skille	Academic
Category	Domain	Cluster	Common Core Standard	content	SKIIIS	Vocabulary
Ν	VM	Perform operations	N-VM.4a Add vectors end-to-end, component-wise,	Vectors -	N-VM 4a Add vectors using the parallelogram	vector, component
		on vectors.	and by the parallelogram rule. Understand that the	Operations	rule	
			magnitude of a sum of two vectors is typically not the			
			sum of the magnitudes.			
Ν	VM	Perform operations	N-VM.4b Given two vectors in magnitude and direction	Vectors -	N-VM.4b Determine the magnitude and direction	trigonometric
		on vectors.	form, determine the magnitude and direction of their	Operations	of the sum of two vectors	properties of angles,
			sum.			magnitude, vector,
						component
Ν	VM	Perform operations	N-VM.4c Understand vector subtraction v – w as v +	Vectors -	N-VM.4c Subtract vectors using their	vector, component
		on vectors.	(-w), where -w is the additive inverse of w, with the	Operations	components	
			same magnitude as w and pointing in the opposite			
			direction. Represent vector subtraction graphically by			
			connecting the tips in the appropriate order, and			
			perform vector subtraction component-wise.			
Ν	VM	Perform operations	N-VM.4c Understand vector subtraction v – w as v +	Vectors -	N-VM.4c Subtract vectors graphically	vector
		on vectors.	(–w), where –w is the additive inverse of w, with the	Operations		
			same magnitude as w and pointing in the opposite			
			direction. Represent vector subtraction graphically by			
			connecting the tips in the appropriate order, and			
			perform vector subtraction component-wise.			
Ν	VM	Perform operations	N-VM.5 (+) Multiply a vector by a scalar.	Vectors -	N-VM.5	
		on vectors.		Operations		
Ν	VM	Perform operations	N-VM.5a Represent scalar multiplication graphically by	Vectors -	N-VM.5a Multiply a vector and a scalar using the	scalar, vector
		on vectors.	scaling vectors and possibly reversing their direction;	Operations	vector components	
			perform scalar multiplication component-wise, e.g., as			
			c(vx, vy) = (cvx, cvy).			
Ν	VM	Perform operations	N-VM.5a Represent scalar multiplication graphically by	Vectors -	N-VM.5a Multiply a vector and a scalar	scalar, vector
		on vectors.	scaling vectors and possibly reversing their direction;	Operations	graphically	
			perform scalar multiplication component-wise, e.g., as			
			c(vx, vy) = (cvx, cvy).			

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
Ν	VM	Perform operations on vectors.	N-VM.5b Compute the magnitude of a scalar multiple cv using $ cv = c v$. Compute the direction of cv knowing that when $ c v \neq 0$, the direction of cv is either along v (for c > 0) or against v (for c < 0).	Vectors - Operations	N-VM.5b Compute the direction and magnitude of a scalar multiple	vector, scalar multiple, magnitude
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.6 (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.	Matrices - Operations	N-VM.6 Represent and manipulate data using matrices	matrix
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.7 (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.	Matrices - Operations	N-VM.7 Multiply matrices by scalars to produce new matrices	distribution, scalar, matrix
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.8 (+) Add, subtract, and multiply matrices of appropriate dimensions.	Matrices - Operations	N-VM.8 Add, subtract, and multiply matrices of appropriate dimensions	dimensions, matrix
Ν	VM	Perform operations on matrices and use matrices in applications.	N-VM.9 (+) Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.	Matrices - Operations	N-VM.9 Prove commutative, associative, and distributive properties of matrices	commutative, associative, distributive properties from algebra, matrices
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.10 (+) Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.	Matrices - Operations	N-VM.10 Explain the role of zero and identity matrices in matrix addition and multiplication	matrices, square matrices

Conceptual	Domain	Cluster	Common Core Standard	Content	Skills	Academic
Category						vocabulary
N	VM	Perform operations on matrices and use	N-VM.10 (+) Understand that the zero and identity matrices play a role in matrix addition and	Matrices - Operations	N-VM.10 Find the determinant of a square matrix	determinant, matrix
		applications.	numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.			
Ν	VM	Perform operations	N-VM.11 (+) Multiply a vector (regarded as a matrix	Matrices -	N-VM.11 Multiply a vector by a matrix of suitable	vector, dimensions,
		on matrices and use	with one column) by a matrix of suitable dimensions to	Operations	dimensions to produce another vector	matrix
		applications.	transformations of vectors.			
N	VM	Perform operations	N-VM.11 (+) Multiply a vector (regarded as a matrix	Matrices -	N-VM.11 Transform vectors using matrices	transform, vector,
		on matrices and use	with one column) by a matrix of suitable dimensions to	Operations		matrix, distribution
		matrices in	produce another vector. Work with matrices as			
		applications.	transformations of vectors.			
Ν	VM	Perform operations	N-VM.12 (+) Work with 2 × 2 matrices as a	Matrices -	N-VM.12 Transform 2x2 matrices (Calculus)	transform, matrix,
		on matrices and use	transformations of the plane, and interpret the	Operations		square matrices
		matrices in	absolute value of the determinant in terms of area.			
		applications.				
Ν	VM	Perform operations	N-VM.12 (+) Work with 2 × 2 matrices as a	Matrices -	N-VM.12 Interpret the absolute value of the	determinant, matrix
		on matrices and use	transformations of the plane, and interpret the	Operations	determinant in terms of area (Calculus)	
		matrices in	absolute value of the determinant in terms of area.			
		applications.				
А	REI	Solve systems of	A-REI.8 (+) Represent a system of linear equations as a	Matrices - Solving	A-REI.8 Represent a system of linear equations as	matrix, vector
		equations.	single matrix equation in a vector variable.	Systems of equations	a single matrix equation in a vector variable	
А	REI	Solve systems of	A-REI.9 (+) Find the inverse of a matrix if it exists and	Matrices - Solving	A-REI.9 Solve systems of linear equations using	matrices, invertible
		equations.	use it to solve systems of linear equations (using	Systems of	the inverse of a matrix	
			technology for matrices of dimension 3 × 3 or greater).	equations		

Conceptual	Domain	Cluster	Common Core Standard	Content	Skills	Academic
Category	Domain	Cluster		content	Skiis	Vocabulary
F	IF	Analyze functions using different representations.	F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★	Functions - Analysis	F-IF.7	
F	IF	Analyze functions using different representations.	F-IF.7d (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.	Functions - Analysis	F-IF.7d Identify zeros through graphing rational functions	x-intercepts, interval notation, oblique asymptote, average rate of change
F	IF	Analyze functions using different representations.	F-IF.7d (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.	Functions - Analysis	F-IF.7d Identify asymptotes through graphing rational functions	dividing by zero, interval notation, oblique asymptote, average rate of change
F	IF	Analyze functions using different representations.	F-IF.7d (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.	Functions - Analysis	F-IF.7d Recognize end behavior through graphing rational functions	even and odd degree, interval notation, oblique asymptote, average rate of change
F	BF	Build a function that models a relationship between two quantities.	F-BF.1c (+) Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.	Functions - Composition	F-BF.1c Compose functions	Substitution
F	BF	Build new functions from existing functions.	F-BF.4 Find inverse functions.	Building functions - Inverses	F-BF.4	
F	BF	Build new functions from existing functions.	F-BF.4b (+) Verify by composition that one function is the inverse of another.	Building functions - Inverses	F-BF.4b Verify functions are inverses through composition	one to one

Conceptual	Domain	Cluster	Common Core Standard	Content	Skills	Academic
Category	Domain	cluster		content	Skiij	Vocabulary
F	BF	Build new functions	F-BF.4c (+) Read values of an inverse function from a	Building functions -	F-BF.4c Calculate the coordinates of an inverse	one to one
		from existing	graph or a table, given that the function has an inverse.	Inverses	function from a graph or table	
		functions.				
F	BF	Build new functions	F-BF.4d (+) Produce an invertible function from a non-	Building functions -	F-BF.4d Produce an invertible function from a	invertible, one to one
		from existing	invertible function by restricting the domain.	Inverses	non-invertible function by restricting the domain	
		functions.				
F	BF	Build new functions	F-BF.5 (+) Understand the inverse relationship	Building functions -	F-BF.5 Compare the characteristics of exponents	
		from existing	between exponents and logarithms and use this	Inverses	and logarithms	
		functions.	relationship to solve problems involving logarithms			
			and exponents.			
F	BF	Build new functions	F-BF.5 (+) Understand the inverse relationship	Building functions -	F-BF.5 Solve problems involving logarithms and	logistic
		from existing	between exponents and logarithms and use this	Inverses	exponents	
		functions.	relationship to solve problems involving logarithms			
			and exponents.			
F	TF	Extend the domain of	F-TF.3 (+) Use special triangles to determine	Trigonometric	F-TF.3 Geometrically determine the values of	30-60-90, 45-45-90
		trigonometric	geometrically the values of sine, cosine, tangent for	Functions - Special	sine, cosine, and tangent for $\pi/3$, $\pi/4$ and $\pi/6$	triangles, cosecant,
		functions using the	$\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the	Triangles	using special triangles	secant, cotangent
		unit circle.	values of sine, cosines, and tangent for x, π + x, and 2π			
			– x in terms of their values for x, where x is any real			
			number.			
F	TF	Extend the domain of	F-TF.3 (+) Use special triangles to determine	Trigonometric	F-TF.3 Express the values of sine, cosine, and	cosecant, secant,
		trigonometric	geometrically the values of sine, cosine, tangent for	Functions - Unit	tangent for x, π + x, and 2π – x using the unit	cotangent, midline,
		functions using the	$\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the	Circle	circle	phase shift
		unit circle.	values of sine, cosines, and tangent for x, π + x, and 2π			
			– x in terms of their values for x, where x is any real			
			number.			
F	TF	Extend the domain of	F-TF.4 (+) Use the unit circle to explain symmetry (odd	Trigonometric	F-TF.4 Explain even/odd symmetry and	fold along y axis,
		trigonometric	and even) and periodicity of trigonometric functions.	Functions - Unit	periodicity of trigonometric functions using the	rotate 180 degrees,
		functions using the		Circle	unit circle	even symmetry, odd
		unit circle.				symmetry

Conceptual	Domain	Cluster	Common Core Standard	Content	Skills	Academic
Category						Vocabulary
F	TF	Model periodic	F-TF.6 (+) Understand that restricting a trigonometric	Trigonometric	F-TF.6 Construct the inverse of a trigonometric	one to one
		phenomena with	function to a domain on which it is always increasing or	Functions - Inverse	function through restricting the domain	
		trigonometric	always decreasing allows its inverse to be constructed.			
		functions.				
F	TF	Model periodic	F-TF.7 (+) Use inverse functions to solve trigonometric	Trigonometric	F-TF.7 Model trigonometric equation word	Solving inverse
		phenomena with	equations that arise in modeling contexts; evaluate the	Functions -	problems using inverses and technology	trigonometric
		trigonometric	solutions using technology, and interpret them in	Modeling		equations, one-to-
		functions.	terms of the context.★			one, linear speed,
						angular speed
F	TF	Prove and apply	F-TF.9 (+) Prove the addition and subtraction formulas	Trigonometric	F-TF.9 Prove the addition and subtraction	Substitution
		trigonometric	for sine, cosine, and tangent and use them to solve	Functions - Proving	formulas for sine, cosine, and tangent	
		identities.	problems.	Identities		
F	TF	Prove and apply	F-TF.9 (+) Prove the addition and subtraction formulas	Trigonometric	F-TF.9 Solve trigonometric problems using the	
		trigonometric	for sine, cosine, and tangent and use them to solve	Functions - Solving	addition and subtraction formulas for sine, cosine,	
		identities.	problems.	equations	and tangent	
G	SRT	Apply trigonometry to	G-SRT.9 (+) Derive the formula a = 1/2 absinc for the	Trigonometric	G-SRT.9 Derive the formula a = 1/2 absinc for the	law of sines, law of
		general triangles	area of a triangle by drawing an auxillary line from a	Functions -	area of a triangle by drawing an auxillary line from	cosines, Heron's
			vertex perpendicular to the opposite side.	Similarity, right	a vertex perpendicular to the opposite side.	formula
				triangles, and		
				trigonometry		
G	SRT	Apply trigonometry to	G-SRT.10 (+) Prove the law of cosines and sines and	Trigonometric	G-SRT.10 Prove the law of cosines and sines and	law of sines, law of
		general triangles	use them to solve problems.	Functions -	use them to solve problems.	cosines
				Similarity, right		
				triangles, and		
				trigonometry		
G	SRT	Apply trigonometry to	G-SRT.11 (+) Understand and apply the law of sines	Trigonometric	G-SRT.11 Understand and apply the law of sines	law of sines, law of
		general triangles	and law of cosines to find unknown measurements in	Functions -	and law of cosines to find unknown	cosines
			right and non-right triangles. (e.g. Surveying problems,	Similarity, right	measurements in right and non-right triangles.	
			resultant forces)	triangles, and	(e.g. Surveying problems, resultant forces)	
				trigonometry		

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
G	GPE	Translate between the geometric description and the equation for a conic section	G-GPE.3 (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.	Conic Sections - Forming Equations	G-GPE.3 Derive the equations of ellipses given the foci, using the fact that the sum or difference of distances from the foci is constant	circles, Pythagorean theorem
G	GPE	Translate between the geometric description and the equation for a conic section	G-GPE.3 (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.	Conic Sections - Forming Equations	G-GPE.3 Derive the equations of hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant	conic section, co- vertices, directrix, ellipse, focus, hyperbola, major axis, minor axis