Resources: A	Approved 1	from Board of Education	on	Assessments: PAR	CC Assessments, District Benchmark Assessmer	nts
		Common Core State	Standards – Standards for Mathematical Practice:			
		1. Make sense of proble	ems and persevere in solving them.	2. Reason abstract	ly and quantitatively.	
		3. Construct viable argu	uments and critique the reasoning of others.	4. Model with mat	hematics.	
		5. Use appropriate tool	s strategically.	6. Attend to precis	ion.	
		7. Look for and make use of structure.		8. Look for and exp	oress regularity in repeated reasoning.	
Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
N	CN	operations with	N-CN.1 Know there is a complex number i such that i2 = -1 , and every complex number has the form a + bi with a and b real.	Complex Numbers in Standard Form	N-CN.1 Recognize there is a complex number I	standard form of a complex number
N	CN	operations with	N-CN.1 Know there is a complex number i such that i2 = -1 , and every complex number has the form a + bi with a and b real.	Complex Numbers in Standard Form	N-CN.1 Write complex numbers in the form a+bi	
N	CN	operations with	N-CN.2 Use the relation i2 = -1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	1 -	N-CN.2 Apply the commutative, associative, and distributive properties to operations involving complex numbers	complex conjugate
N	CN	-	N-CN.7 Solve quadratic equations with real coefficients that have complex solutions.	•	N-CN.7 Solve quadratic equations with real coefficients that have complex solutions	
ı	CN		N-CN.8 (+) Extend polynomial identities to the complex numbers. For example, rewrite $x^2 + 4$ as $(x + 2i)(x - 2i)$.		N-CN.8 Rewrite polynomials in factored form that involve complex numbers	
l .	CN		N-CN.9 (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.	'	N-CN.9 Show that the Fundamental Theorem of Algebra is true for quadratic polynomials	Fundamental Theorem of Algebr multiple root

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
A	SSE	Interpret the structure	A-SSE.1 Interpret expressions that represent a quantity	Polynomial	A-SSE.1 Model expressions that represent a	
		of expressions.	in terms of its context.★	Expressions	quantity in terms of its context	
A	SSE	Interpret the structure	A-SSE.1a Interpret parts of an expression, such as	Polynomial	A-SSE.1a Interpret parts of an expression, such as	
		of expressions.	terms, factors, and coefficients.	Expressions	terms, factors, and coefficients	
A	SSE	Interpret the structure	A-SSE.1b Interpret complicated expressions by viewing	Polynomial	A-SSE.1b Describe each entity of a complicated	
		of expressions.	one or more of their parts as a single entity. For	Expressions	expression	
			example, interpret P(1+r)n as the product of P and a			
			factor not depending on P.			
Α	SSE	•	A-SSE.2 Use the structure of an expression to identify	Polynomial	A-SSE.2 Recognize equivalent forms of	
		of expressions.	ways to rewrite it. For example, see x4 – y4 as (x2)2 –	Expressions	expressions	
			(y2)2, thus recognizing it as a difference of squares			
			that can be factored as (x2 – y2)(x2 + y2).			
A	SSE	Write expressions in	A-SSE.4 Derive the formula for the sum of a finite	Polynomial	A-SSE.4 Derive the formula for the sum of a finite	geometric series
		equivalent forms to	geometric series (when the common ratio is not 1),	Expressions	geometric series	
		solve problems.	and use the formula to solve problems. For example,			
			calculate mortgage payments.★			
A	SSE	Write expressions in	A-SSE.4 Derive the formula for the sum of a finite	Polynomial	A-SSE.4 Apply the formula for the sum of a finite	
		equivalent forms to	geometric series (when the common ratio is not 1),	Expressions	geometric series to solve problems	
		solve problems.	and use the formula to solve problems. For example,			
			calculate mortgage payments.★			
Α	APR	Perform arithmetic	A-APR.1 Understand that polynomials form a system	Arithmetic	A-APR.1 Apply operations to polynomials	
		operations on	analogous to the integers, namely, they are closed	Operations on		
		polynomials.	under the operations of addition, subtraction, and	Polynomial		
			multiplication; add, subtract, and multiply polynomials.	Expressions		
A	APR	Understand the	A-APR.2 Know and apply the Remainder Theorem: For	Factors of	A-APR.2 State and apply the Remainder theorem	Remainder Theorem
		relationship between	a polynomial p(x) and a number a, the remainder on	Polynomial		
		zeros and factors of	division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$	Expressions		
		polynomials.	is a factor of p(x).			

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
А	APR	Understand the relationship between zeros and factors of	A-APR.2 Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$	Factors of Polynomial Expressions	A-APR.2 Recognize the relationship between zeros and factors of a polynomial	roots
		polynomials.	is a factor of $p(x)$.	Expressions		
A	APR	Understand the relationship between zeros and factors of polynomials.	A-APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	Zeros of Polynomial Equations	A-APR.3 Identify zeros of polynomials given the factorization	
А	APR	Understand the relationship between zeros and factors of polynomials.	A-APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	Zeros of Polynomial Equations	A-APR.3 Utilize the zeros of a polynomial to construct a rough graph of the function	
А	APR	Use polynomial identities to solve problems.	A-APR.4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x2 + y2)2 = (x2 - y2)2 + (2xy)2$ can be used to generate Pythagorean triples.	Identities of Polynomial Expressions	A-APR.4 Prove polynomial identities	sum of cubes, sum of squares, difference of cubes/squares/ quadratic formula
А	APR	Use polynomial identities to solve problems.	A-APR.4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x2 + y2)2 = (x2 - y2)2 + (2xy)2$ can be used to generate Pythagorean triples.	Identities of Polynomial Expressions	A-APR.4 Write equivalent forms of polynomial expressions using identities	
A	APR	Use polynomial identities to solve problems.	A-APR.5 (+) Know and apply the Binomial Theorem for the expansion of (x + y)n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.1	Polynomial Expressions	A-APR.5 Recognize Pascal's Triangle as the coefficients in binomial expansions	Pascal's Triangle; Binomial Theorem
А	APR	Use polynomial identities to solve problems.	A-APR.5 (+) Know and apply the Binomial Theorem for the expansion of (x + y)n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.2	Polynomial Expressions	A-APR.5 Expand polynomial expressions using Pascal's triangle	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
А	APR	Rewrite rational expressions.	A-APR.6 Rewrite simple rational expressions in different forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.	Rational Expressions	A-APR.6 Write equivalent forms of rational expressions	rational expression
A	APR	Rewrite rational expressions.	A-APR.7 (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.	Arithmetic Operations on Rational Expressions	A-APR.7 Apply operations to rational expressions	
А	CED	Create equations that describe numbers or relationships.	A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	Equations and Inequalties in one variable	A-CED.1 Create and use equations in one variable	
А	CED	Create equations that describe numbers or relationships.	A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	Equations and Inequalties in one variable	A-CED.1 Create and use inequalities in one variable	
A	CED	Create equations that describe numbers or relationships.	A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Equations and Inequalties in two variables	A-CED.2 Create equations in two or more variables to represent relationships between quantities	
А	CED	Create equations that describe numbers or relationships.	A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Equations and Inequalties in two variables	A-CED.2 Graph equations on coordinate axes with labels and scales	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
A	CED	Create equations that describe numbers or relationships.	A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	Constraints within Equations and Inequalties	A-CED.3 Represent constraints using one or more equations	
А	CED	Create equations that describe numbers or relationships.	A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	Constraints within Equations and Inequalties	A-CED.3 Represent constraints using one or more inequalities	
А	CED	Create equations that describe numbers or relationships.	A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	Constraints within Equations and Inequalties	A-CED.3 Interpret solutions to systems of equations	
А	CED	Create equations that describe numbers or relationships.	A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	Constraints within Equations and Inequalties	A-CED.3 Interpret solutions to systems of inequalities	
А	CED	Create equations that describe numbers or relationships.	A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.	Literal Equations	A-CED.4 Write equivalent forms of equations	
А	REI	Understand solving equations as a process of reasoning and explain the reasoning.	A-REI.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	Rational and Radical Equations	A-REI.2 Solve rational and radical equations in one variable	
A	REI	Understand solving equations as a process of reasoning and explain the reasoning.	A-REI.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	Rational and Radical Equations	A-REI.2 Recognize equations where extraneous solutions exist	extraneous solution

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
A	REI	Represent and solve equations and inequalities graphically.	, , ,	Solutions of Equations and Inequalties	A-REI.11 Explain why a point(s) of intersection represent a solution(s) to a system	logarithmic function
A	REI	Represent and solve equations and inequalities graphically.	A-REI.11 Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \bigstar	Solutions of Equations and Inequalties	A-REI.11 Approximate the solution(s) to a system using technology	
F	IF	Interpret functions that arise in applications in terms of the context.	F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ★	Features of Functions	F-IF.4 Interpret key features of graphs and tables	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	IF	Interpret functions	F-IF.4 For a function that models a relationship	Features of	F-IF.4 Sketch a graph given key features of a	
		that arise in	between two quantities, interpret key features of	Functions	model	
		applications in terms	graphs and tables in terms of the quantities, and			
		of the context.	sketch graphs showing key features given a verbal			
			description of the relationship. Key features include:			
			intercepts; intervals where the function is increasing,			
			decreasing, positive, or negative; relative maximums			
			and minimums; symmetries; end behavior; and			
			periodicity.★			
F	IF	Interpret functions	F-IF.5 Relate the domain of a function to its graph and,	Domain of	F-IF.5 Relate the domain of a function to its graph	
		that arise in	where applicable, to the quantitative relationship it	Functions	and context	
		applications in terms	describes. For example, if the function h(n) gives the			
		of the context.	number of person-hours it takes to assemble n engines			
			in a factory, then the positive integers would be an			
			appropriate domain for the function. \bigstar			
F	IF	Interpret functions	F-IF.6 Calculate and interpret the average rate of	Rate of Change	F-IF.6 Calculate average rate of change of a	
		that arise in	change of a function (presented symbolically or as a		function in various forms	
		applications in terms	table) over a specified interval. Estimate the rate of			
		of the context.	change from a graph.★			
F	IF	Analyze functions	F-IF.7 Graph functions expressed symbolically and	Graphical Features	F-IF.7 Graph functions by hand	
		using different	show key features of the graph, by hand in simple	of Functions		
		representations.	cases and using technology for more complicated			
			cases.★			
F	IF	Analyze functions	F-IF.7 Graph functions expressed symbolically and	Graphical Features	F-IF.7 Graph functions using technology	
		using different	show key features of the graph, by hand in simple	of Functions		
		representations.	cases and using technology for more complicated			
			cases.★			
F	IF	Analyze functions	F-IF.7b Graph square root, cube root, and piecewise-	Graphing nth root	F-IF.7b Graph square root functions	
		using different	defined functions, including step functions and	and piecewise		
		representations.	absolute value functions.	Functions		

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	IF	Analyze functions	F-IF.7b Graph square root, cube root, and piecewise-	Graphing nth root	F-IF.7b Graph cube root functions	
		using different	defined functions, including step functions and	and piecewise		
		representations.	absolute value functions.	Functions		
F	IF	Analyze functions	F-IF.7b Graph square root, cube root, and piecewise-	Graphing nth root	F-IF.7b Graph piecewise-defined functions	piecewise function
		using different	defined functions, including step functions and	and piecewise		
		representations.	absolute value functions.	Functions		
F	IF	Analyze functions	F-IF.7b Graph square root, cube root, and piecewise-	Graphing nth root	F-IF.7b Graph step functions	step functions
		using different	defined functions, including step functions and	and piecewise		
		representations.	absolute value functions.	Functions		
F	IF	Analyze functions	F-IF.7b Graph square root, cube root, and piecewise-	Graphing nth root	F-IF.7b Graph absolute value functions	
		using different	defined functions, including step functions and	and piecewise		
		representations.	absolute value functions.	Functions		
F	IF	Analyze functions	F-IF.7c Graph polynomial functions, identifying zeros	Graphical Features	F-IF.7c Graph polynomial functions using key	end behavior
		using different	when suitable factorizations are available, and showing	of Functions	features	
		representations.	end behavior.			
F	IF	Analyze functions	F-IF.7e Graph exponential and logarithmic functions,	Graphing	F-IF.7e Graph exponential functions using key	intercepts, end
		using different	showing intercepts and end behavior, and	Exponential and	features	behavior, exponential
		representations.	trigonometric functions, showing period, midline, and	Logarithmic		function
			amplitude.	Functions		
F	IF	Analyze functions	F-IF.7e Graph exponential and logarithmic functions,	Graphing	F-IF.7e Graph logarithmic functions using key	
		using different	showing intercepts and end behavior, and	Exponential and	features	
		representations.	trigonometric functions, showing period, midline, and	Logarithmic		
			amplitude.	Functions		
F	IF	Analyze functions	F-IF.7e Graph exponential and logarithmic functions,	Graphing	F-IF.7e Graph trigonometric functions using key	period, midline,
		using different	showing intercepts and end behavior, and	Exponential and	features	amplitude
		representations.	trigonometric functions, showing period, midline, and	Logarithmic		·
			amplitude.	Functions		
F	IF	Analyze functions	F-IF.8 Write a function defined by an expression in	Equivalent Forms of	F-IF.8 Write equivalent forms of functions	
		using different	different but equivalent forms to reveal and explain	Functions	,	
		representations.	different properties of the function.			

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	IF	Analyze functions using different representations.	F-IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	Equivalent Forms of Functions	F-IF.8 Explain how the form of an equation reveals properties of the function	
F	IF	Analyze functions using different representations.	F-IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	Compare Functions	F-IF.9 Compare properties of two functions in varied representations	
F	BF	Build a function that models a relationship between two quantities.	F-BF.1 Write a function that describes a relationship between two quantities. ★	Writing Functions	F-BF.1 Model a real world situation with a function in two variables	
F	BF	Build a function that models a relationship between two quantities.	F-BF.1b Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.	Arithmetic operations on Functions	F-BF.1b Combine functions using arithmetic operations	
F	BF	Build new functions from existing functions.	F-BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.		F-BF.3 Compare a function to the parent function	
F	BF	Build new functions from existing functions.	F-BF.4 Find inverse functions.	Inverse Functions	F-BF.4 Write the inverse of a function	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	BF	Build new functions from existing functions.	F-BF.4a Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2x^3$ or $f(x) = (x+1)/(x-1)$ for $x \ne 1$.	Solving Equations	F-BF.4 Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse	
F	LE	Construct and compare linear, quadratic, and exponential models and solve problems.	F-LE.4 For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.	Exponential Models and Logarithms	F-LE.4 Write exponential models as logarithms	logarithm
F	LE	Construct and compare linear, quadratic, and exponential models and solve problems.	F-LE.4 For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.	Exponential Models and Logarithms	F-LE.4 Evaluate logarithms using technology	
F	TF	Extend the domain of trigonometric functions using the unit circle.	F-TF.1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.	Radian Measure and Arc Length	F-TF.1 Recognize radian measure of an angle as the length of the arc on the unit circle subtended by the angle	radian; unit circle
F	TF	Extend the domain of trigonometric functions using the unit circle.	F-TF.2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.	Trigonometric Functions using the Unit Circle	F-TF.2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers	
F	TF	Extend the domain of trigonometric functions using the unit circle.	F-TF.2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.	Trigonometric Functions using the Unit Circle	F-TF.2 Interpret radian measures of angles traversed counterclockwise around the unit circle	
F	TF	Model periodic phenomena with trigonometric functions.	F-TF.5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. *\pm\$	Modeling with Trigonometric Functions	F-TF.5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	TF	Prove and apply trigonometric identities.	F-TF.8 Prove the Pythagorean identity $\sin 2(\theta) + \cos 2(\theta)$ = 1 and use it to find $\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ given $\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ and the quadrant of the angle.	Trigonometric Identities	F-TF.8 Prove the Pythagorean identity	Pythagorean identity: $sin2(\theta) + cos2(\theta) = 1$
F	TF	Prove and apply trigonometric identities.	F-TF.8 Prove the Pythagorean identity $\sin 2(\theta) + \cos 2(\theta) = 1$ and use it to find $\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ and the quadrant of the angle.	Trigonometric Identities	F-TF.8 Apply the Pythagorean identity	
S	ID	interpret data on a single count or	S-ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	Interpreting Quantitative Data	S-ID.4 Create a normal distribution for a given data set	standard deviation
S	ID	interpret data on a single count or measurement variable	S-ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	Interpreting Quantitative Data	S-ID.4 Determine whether a normal distribution is appropriate for a data set	
S	ID	single count or measurement variable	S-ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	Interpreting Quantitative Data	S-ID.4 Estimate areas under the normal curve using calculators, spreadhseets, and tables	normal curve, z-table; standardizing
S	IC	Understand and evaluate random processes underlying statistical experiments	S-IC.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.	Statistical Inferences	S-IC.1 Recognize statistics as a process for making inferences about population parameters based on a random sample from that population	·

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
S	С	, ,	S-IC.2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?	Statistical Conclusions	S-IC.2 Justify whether a specified model is consistent with results from a given datagenerating process	
S	IC	Make inferences and justify conclusions from sample surveys, experiments, and observational studies	S-IC.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	Sampling Methods	S-IC.3 Describe the purpose and difference between various sampling procedures	
S	IC	justify conclusions	S-IC.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	Data Analysis	S-IC.4 Estimate a population mean or proportion from a sample survey.	
S	IC	Make inferences and justify conclusions from sample surveys, experiments, and observational studies	S-IC.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	Data Analysis	S-IC.4 Develop a margin of error through the use of simulation models for random sampling	margin of error
S	IC	Make inferences and justify conclusions from sample surveys, experiments, and observational studies	S-IC.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.	Data Analysis	S-IC.5 Compare results from two treatments of data	
S	IC	Make inferences and justify conclusions from sample surveys, experiments, and observational studies	S-IC.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.	Data Analysis	S-IC.5 Decide whether differences between parameters are significant based on simulations	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
S	IC	Make inferences and justify conclusions from sample surveys, experiments, and observational studies	S-IC.6 Evaluate reports based on data.	Data Analysis	S-IC.6 Draw conclusions from reports based on data	
S	MD		S-MD.6 (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).	Probability	S-MD.6 Evaluate outcomes using probability	
S	MD	evaluate outcomes of	S-MD.7 (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).	Probability	S-MD.7 Analyze decisions and strategies using probability concepts	