Grade 8	Honor	s Yearlong Ma	thematics Map			
Resources: A	opproved t	from Board of Educati	on	Assessments: PAR	CC Assessments, Performance Series, District B	enchmark Assessment
		1. Make sense of probl	- ,	 Reason abstractly and quantitatively. Model with mathematics. Attend to precision. Look for and express regularity in repeated reasoning. 		
Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
Ν	RN	of exponents to rational exponents.	N-RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 51/3 to be the cube root of 5 because we want (51/3)3 = 5(1/3)3 to hold, so (51/3)3 must equal 5.	-	N-RN.1 Extend the properties of integer exponents to rational exponents to explain the meaning of rational exponents	Rational Exponents, <i>Base</i>
N	RN		N-RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.	Rewriting Radicals & Rational Exponents	N-RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents	Radical
N	RN	Use properties of rational and irrational numbers.	N-RN.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	Rational and	N-RN.3 Explain why the sum of two rational and/or irrational numbers is rational or irrational	Rational, Irrational
N	RN	rational and irrational numbers.	N-RN.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	Rational and Irrational Numbers	N-RN.3 Explain why the product of two rational and/or irrational numbers is rational or irrational	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
Ν	Q		N-Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	Units in Problem Solving	N-Q.1 Choose and interpret units and scale to guide the solution of multi step problems	
N	Q	Reason quantitatively and use units to solve problems.	N-Q.2 Define appropriate quantities for the purpose of descriptive modeling.	Units in Problem Solving	N-Q.2 Define appropriate quantities and/or units for the purpose of descriptive modeling	
N	Q		N-Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	Units in Problem Solving	N-Q.3 Choose a level of accuracy appropriate to the problem when reporting the solution	
A	SSE	Interpret the structure of expressions.	A-SSE.1 Interpret expressions that represent a quantity in terms of its context.	Modeling Expressions	A-SSE.1 Model expressions that represent a quantity based on its parts and context	
A	SSE	Interpret the structure of expressions.	A-SSE.1a Interpret parts of an expression, such as terms, factors, and coefficients.	Structure of Expressions - parts of expressions	A-SSE.1a Identify and explain the effect of the parts of an expression, such as terms, factors, and coefficients	Degree, Leading Coefficient, Factors, <i>Term, Constant</i>
A	SSE	Interpret the structure of expressions.	A-SSE.1b Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P.		A-SSE.1b Interpret complicated expressions by viewing one or more of their parts as a single entity	
A	SSE	Interpret the structure of expressions.	A-SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see $x4 - y4$ as $(x2)2 - (y2)2$, thus recognizing it as a difference of squares that can be factored as $(x2 - y2)(x2 + y2)$.	Structure of Expressions - rewriting expressions	A-SSE.2 Rewrite an expression based on its structure	Difference of Squares, Factoring: defined as factoring completely
A	SSE	Write expressions in equivalent forms to solve problems.	A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	Modeling Equivalent Expressions	A-SSE.3 Choose and produce equivalent expressions to reveal and explain properties of that equivalent expression	Factored Form, Vertex Form, Standard Form, Exponential Function

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
A	SSE		A-SSE.3a Factor a quadratic expression to reveal the zeros of the function it defines.	Quadratics - factoring	A-SSE.3a Factor a quadratic expression to reveal the zeros of the function it defines	Zeros, Factor: defined as factoring completely, zeroes
A	SSE	equivalent forms to	A-SSE.3b Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.	Quadratics - completing the square	A-SSE.3b Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines	Completing the square, maximum and minimum, vertex
A	SSE	equivalent forms to	 A-SSE.3c Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as (1.151/12)12t ≈ 1.01212t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%. 		A-SSE.3c Transform expressions for exponential functions with the properties of exponents	Transformations, Stretch, Compress
A	APR	operations on	A-APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	Polynomial Arithmetic	A-APR.1 Perform addition, subtraction and multiplication on polynomials	Polynomial, Binomial, Trinomial, Monomial, <i>Like Terms</i>
A	APR	operations on	A-APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	Polynomial Arithmetic	A-APR.1 Compare operations on polynomials to operations on other systems such as integers	
А	CED	describe numbers or relationships.	A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	Creating Equations and Inequalities in One Variable	A-CED.1 Create equations and inequalities in one variable and use them to solve problems	Inequalities
A	CED	describe numbers or	A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Creating Equations and Inequalities in Two Variables	A-CED.2 Create equations <i>and inequalities</i> in two or more variables to represent relationships between quantities (We added the bold/italic because we felt this was missing)	Compound Inequalities

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
A	CED	Create equations that describe numbers or relationships.	A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Creating Equations and Inequalities in Two Variables	A-CED.2 Graph equations on coordinate axes with labels and scales	
A	CED	Create equations that describe numbers or relationships.	A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.	Creating Equations and Inequalities	A-CED.3 Represent constraints by equations or inequalities or a by a system of equations or inequalities	Inequalities, Systems of Equations and Inequalities Constraints
A	CED	Create equations that describe numbers or relationships.	A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.	Creating Equations and Inequalities	A-CED.3 Determine solutions that are viable or nonviable options in a modeling context	Viable & Non viable
A	CED	Create equations that describe numbers or relationships.	A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.	Equivalent Equations	A-CED.4 Solve an equation or formula for a specific variable	Literal Equation
A	REI	Understand solving equations as a process of reasoning and explain the reasoning.	A-REI.1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	Solving Equations	A-REI.1 Justify the steps for solving equations	
A	REI	Solve equations and inequalities in one variable.	A-REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	Linear Equations & Inequalities - One variable	A-REI.3 Solve linear equations and inequalities in one variable	<i>Inequalities,</i> Compound Inequalities

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
A	REI	Solve equations and inequalities in one variable.	A-REI.4 Solve quadratic equations in one variable.	Quadratics - Solving	A-REI.4 Solve quadratic equations in one variable	Quadratic Function
А	REI	Solve equations and inequalities in one variable.	A-REI.4a Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)2 = q$ that has the same solutions. Derive the quadratic formula from this form.	Quadratics - completing the square	A-REI.4a Transform quadratic equations by completing the square	Completing the Square
A	REI	Solve equations and inequalities in one variable.	A-REI.4b Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.	Quadratics - Solving using the best method	A-REI.4b Determine the appropriate method for solving, then solve the quadratic equation	Taking square roots, Quadratic Formula, Completing the Square, Factoring
A	REI	Solve systems of equations.	A-REI.5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	Systems of Linear Equations	A-REI.5 Justify in a system of linear equations that equivalent equations will produce the same solution	Substitution / Elimination, System, Consistent Independent System
A	REI	Solve systems of equations.	A-REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	Systems of Linear Equations	A-REI.6 Solve systems of linear equations by graphing, substitution, and elimination	Substitution , Elimination, System of Equations , Inconsistent System, Consistent Dependent System
A	REI	Solve systems of equations.	A-REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x2 + y2 = 3$.	Systems of Equations	A-REI.7 Solve a system of equations consisting of a linear and quadratic equations by graphing or substitution	System of Equations

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
A	REI	Represent and solve equations and inequalities graphically.	A-REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	Graphs of Equations	A-REI.10 Explain that a graph represents the set of all solutions to an equation in two variables	System of Equations
A	REI	Represent and solve equations and inequalities graphically.	A-REI.11 Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	Systems of Equations	A-REI.11 Solve a system of equations by identifying intersections	System of Equations
A	REI	Represent and solve equations and inequalities graphically.	A-REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half- planes.	Graphing Linear Inequalities	A-REI.12 Graph a linear inequality	Feasible region, boundary line.
A	REI	Represent and solve equations and inequalities graphically.	A-REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half- planes.	Graphing Linear Inequalities - Systems	A-REI.12 Graph a system of linear inequalities	System of Inequalities
F	IF	Understand the concept of a function and use function notation.	F-IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y = f(x)$.	Functions - Domain and Range	F-IF.1 Recognize if a relation is a function	Function, Domain, Range, Independent variable, Dependent variable

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F		Understand the concept of a function and use function notation.	F-IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y = f(x)$.	Functions - Notation	F-IF.1 Write a function using function notation	Function,
F		Understand the concept of a function and use function notation.	F-IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	Functions - Evaluating	F-IF.2 Evaluate functions for a given domain	<i>Function, Domain,</i> Function Notation
F		Understand the concept of a function and use function notation.	F-IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$.	Functions - Sequences	F-IF.3 Recognize that sequences are functions	Sequences
F		Interpret functions that arise in applications in terms of the context.	F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.★	Modeling Functions	F-IF.4 Interpret and sketch key features of graphs and tables of linear, quadratic, and exponential functions	Intercepts ; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	IF	Interpret functions that arise in applications in terms of the context.	F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.★	- Restricted Domains	F-IF.5 Relate the domain of a function to the context of a problem	Domain
F	IF	Interpret functions that arise in applications in terms of the context.	F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★	Modeling Functions - Rate of Change	F-IF.6 Calculate and interpret the average rate of change of a linear and quadratic function	
F	IF	Analyze functions using different representations.	F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★	Modeling Functions Graphically	F-IF.7 Graph functions that are in symbolic notation	
F	IF	Analyze functions using different representations.	F-IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.	Modeling Functions Graphically	F-IF.7a Graph linear and quadratic functions	Standard Form (linear), Point Slope Form, Standard Form (quadratic), Vertex Form, Factored Form, Parabola, Vertex, Axis of Symmetry, Maximum, Minimum
F	IF	Analyze functions using different representations.	F-IF.7b Graph square root, cube root, and piecewise- defined functions, including step functions and absolute value functions.	Modeling Functions Graphically	F-IF.7b Graph absolute value functions	Absolute Value
F	IF	Analyze functions using different representations.	F-IF.7b Graph square root, cube root, and piecewise- defined functions, including step functions and absolute value functions.	Modeling Functions Graphically	F-IF.7b Graph piece-wise functions	Piecewise functions, Compound Inequality (in reference to the domain of a piecewise function)

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	IF	Analyze functions using different representations.	F-IF.7b Graph square root, cube root, and piecewise- defined functions, including step functions and absolute value functions.	Modeling Functions Graphically	F-IF.7b Graph step functions	Step Function,
F	IF	Analyze functions using different representations.	F-IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	Modeling Functions Graphically	F-IF.7e Graph exponential functions	Exponential Functions
F	IF	Analyze functions using different representations.	F-IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	Functions - Representations	F-IF.8 Write a function in different but equivalent forms to reveal and explain different properties of the function	Standard Form (Linear), Point Slope Form, Standard Form (Quadratic), Vertex Form, Factored Form
F	IF	Analyze functions using different representations.	F-IF.8a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	Representations	F-IF.8a Factor and complete the square in a quadratic function to identify zeros, extreme values, and symmetry of the graph	Factor, Complete the Square, Zeros, Maximum, Minimum
F	IF	Analyze functions using different representations.	F-IF.8a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	Analyzing	F-IF.8a Interpret the zeros, extreme values, and symmetry of the graph in terms of a context	Zeros, Maximum, Minimum
F	IF	Analyze functions using different representations.		Functions - Analyzing Representations	F-IF.8b Interpret expressions for exponential functions using the properties of exponents	Exponential Functions, Exponential Growth and Decay
F	IF	Analyze functions using different representations.	F-IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	Analyzing Function Representations	F-IF.9 Compare properties of two functions each represented in a different way	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
	BF	Build a function that	F-BF.1 Write a function that describes a relationship	Building Functions -	F-BF.1 Write a linear function that describes a	Standard Form
		models a relationship	between two quantities. ★	relationships	relationship between two quantities	(linear), Point Slope
		between two		between two		Form
		quantities.		quantities		
	BF	Build a function that	F-BF.1a Determine an explicit expression, a recursive	Building Functions -	F-BF.1a Determine an explicit expression, a	Recursive process,
		models a relationship	process, or steps for calculation from a context.	relationships	recursive process, or steps for calculation from a	Explicit Formula
		between two		between two	context	
		quantities.		quantities		
:	BF	Build a function that	F-BF.1b Combine standard function types using	Building Functions -	F-BF.1b Build standard function types using	Constant, Linear,
		models a relationship	arithmetic operations. For example, build a function	relationships	arithmetic operations (compare to parent	Quadratic and
		between two	that models the temperature of a cooling body by	between two	function)	Exponential terms and
		quantities.	adding a constant function to a decaying exponential,	quantities		functions.
			and relate these functions to the model.			
:	BF	Build a function that	F-BF.2 Write arithmetic and geometric sequences both	Building Functions -	F-BF.2 Write arithmetic sequences both	Arithmetic sequences,
		models a relationship	recursively and with an explicit formula, use them to	relationships	recursively and with an explicit formula	Recursive formula,
		between two	model situations, and translate between the two	between two		explicit formula
		quantities.	forms.★	quantities		
:	BF	Build a function that	F-BF.2 Write arithmetic and geometric sequences both	Building Functions -	F-BF.2 Apply arithmetic sequences to model	Arithmetic sequences
		models a relationship	recursively and with an explicit formula, use them to	relationships	situations	
		between two	model situations, and translate between the two	between two		
		quantities.	forms.★	quantities		
:	BF	Build a function that	F-BF.2 Write arithmetic and geometric sequences both	Building Functions -	F-BF.2 Write geometric sequences both	Geometric sequences,
		models a relationship	recursively and with an explicit formula, use them to	relationships	recursively and with an explicit formula	Recursive formula,
		between two	model situations, and translate between the two	between two		explicit formula
		quantities.	forms.★	quantities		
:	BF	Build a function that	F-BF.2 Write arithmetic and geometric sequences both	Building Functions -	F-BF.2 Apply geometric sequences to model	Geometric sequences
		models a relationship	recursively and with an explicit formula, use them to	relationships	situations	
		•	model situations, and translate between the two	between two		
			forms. ★	quantities		

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	BF	Build a function that models a relationship between two quantities.	F-BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.★	Building Functions - relationships between two quantities	F-BF.2 Translate between arithmetic and geometric sequences	Arithmetic sequences, Geometric sequences,
F	BF	Build new functions from existing functions.	F-BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	from existing	F-BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k	Transformations, Stretch, Compress, Parent Function, Translation
F	BF	Build new functions from existing functions.	F-BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, k $f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	from existing	F-BF.3 Find the value of k given the graphs. (See previous skill statement)	
F	BF	Build new functions from existing functions.	F-BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	from existing	F-BF.3 Experiment with cases and illustrate an explanation of the effects on the graph using technology	Transformations, Stretch, Compress
F	BF	Build new functions from existing functions.	F-BF.4 Find inverse functions.	Building Functions - Inverse Functions	F-BF.4 Build inverse functions	Inverse of a Function

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	BF	Build new functions from existing functions.	F-BF.4a Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2 \times 3$ or $f(x) = (x+1)/(x-1)$ for $x \neq 1$.	Solving with Inverse Function	F-BF.4a For a simple function f that has an inverse, solve an equation of the form f(x) = c by writing an expression for the inverse	Inverse of a Function
F	LE	Construct and compare linear, quadratic, and exponential models and solve problems.	F-LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.	Exponential Models	F-LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions	Function, Exponential Function
F	LE	Construct and compare linear, quadratic, and exponential models and solve problems.	F-LE.1a Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	•	F-LE.1a Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals	Exponential Functions
F	LE	Construct and compare linear, quadratic, and exponential models and solve problems.	F-LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.		F-LE.1b Recognize when one quantity changes at a constant rate per unit interval	
F	LE	Construct and compare linear, quadratic, and exponential models and solve problems.	F-LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.		F-LE.1c Recognize when a quantity grows or decays by a constant percent rate per unit interval	
F	LE	Construct and compare linear, quadratic, and exponential models and solve problems.	F-LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input- output pairs (include reading these from a table).		F-LE.2 Construct linear functions, given a graph, a description of a relationship, or two input-output pairs	Linear Functions

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	LE	compare linear,	F-LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input- output pairs (include reading these from a table).	Construct Exponential Models		Exponential Functions
F	LE	Construct and compare linear,		Exponential Models	F-LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or increasing any polynomial function	
F	LE	Interpret expressions	F-LE.5 Interpret the parameters in a linear or exponential function in terms of a context.	Functions - Interpreting Expressions	F-LE.5 Interpret the parameters in a linear or exponential function in terms of a context	Term
S	ID	Summarize, represent, and interpret data on a single count or measurement variable	line (dot plots, histograms, and box plots).	One Variable Data - Representations	S-ID.1 Represent data with plots on the real number line	
S	ID	Summarize, represent, and interpret data on a single count or measurement variable	data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	Comparing Shape,	S-ID.2 Compare the center and spread of two or more different data sets with the appropriate statistics based on the shape of the data distribution	Standard Deviation, Interquartile Range
S	ID	represent, and	spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	Comparing Shape,	S-ID.3 Explain differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points	Spread, Shape, Center, <i>Outliers</i>

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
S	ID	interpret data on two categorical and	S-ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	Two Variable Data - Two Way Frequency Tables	S-ID.5 Summarize categorical data for two categories in two way frequency tables	Two Way Frequency Tables
S	ID	interpret data on two categorical and	S-ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	Two Variable Data - Two Way Frequency Tables	S-ID.5 Recognize and explain relative frequencies, possible associations and trends in the context of the data	Relative Frequencies
S	ID	•	S-ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	Two Variable Data - Representations	S-ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related	Linear, Positive Correlation, Negative Correlation, No Correlation
S	ID	interpret data on two	S-ID.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.	Two Variable Data - Fitting functions to data	S-ID.6a Fit a linear or exponential function to the data	Regression Equation
S	ID	Summarize, represent, and	S-ID.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and	Two Variable Data - Fitting functions to data	S-ID.6a Solve problems in the context of the data with a function fitted to the data	
S	ID	Summarize, represent, and interpret data on two categorical and quantitative variables	S-ID.6b Informally assess the fit of a function by plotting and analyzing residuals.	Two Variable Data - Fitting functions to data	S-ID.6b Informally assess the fit of a function by plotting and analyzing residuals	Residuals

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
S		-		Two Variable Data - Fitting functions to data	S-ID.6c (Combined with S-ID.6a)	
S					S-ID.7 Interpret the slope and the intercept of a linear model in the context of the data	
S			S-ID.8 Compute (using technology) and interpret the correlation coefficient of a linear fit.	Interpret Linear Models	S-ID.8 Compute, using technology, and interpret the correlation coefficient of a linear fit	Correlation Coefficient
S		Interpret linear models	C C	Interpret Linear Models	S-ID.9 Distinguish between correlation and causation	Correlation, Causation