Grade 8 Yearlong Mathematics Map							
Resources:	Approved from Board	d of Education	Assessments: PAR	CC Assessments, Performance Series, District Bench	mark Assessments		
Common Core State Standards – Standards for Ma 1. Make sense of problems and persevere in solving the 3. Construct viable arguments and critique the reasonin 5. Use appropriate tools strategically. 7. Look for and make use of structure.				 e: 2. Reason abstractly and quantitatively. 4. Model with mathematics. 6. Attend to precision. 8. Look for and express regularity in repeated reasoning. 			
Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary		
NS	numbers that are not rational, and	8.NS.1 Understand informally that every number has a decimal expansion; the rational numbers are those with decimal expansions that terminate in 0s or eventually repeat. Know that other numbers are called irrational.	rational number irrational number	8.NS.1 Classify numbers as rational (terminating or repeating) or irrational by using the decimal expansion	irrational numbers		
NS	numbers that are not rational, and approximate them by	8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^2). For example, by truncating the decimal expansion of V2, show that V2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.	rational number irrational number		truncate, irrational numbers		
NS	numbers that are not rational, and approximate them by rational numbers.	8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^2). For example, by truncating the decimal expansion of V2, show that V2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.	rational number irrational number	8.NS.2 Locate approximate placement or irrational number on a number line diagram			

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
NS	numbers that are not rational, and	8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^2). For example, by truncating the decimal expansion of V2, show that V2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.	rational number irrational number	8.NS.2 Estimate the value of an expression	
EE	Expressions and EquationsWork with radicals and integer exponents.	8.EE.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 3 ² × 3-5= 3–3 = 1/33 = 1/27.	•	8.EE.1 Apply the properties of integer exponents to simplify expressions	positive and negative exponents
EE	Expressions and EquationsWork with radicals and integer exponents.	8.EE.2 Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.		8.EE.2 Represent solutions to equations as square or cube roots	Square Root Cube Root
EE	Expressions and EquationsWork with radicals and integer exponents.	8.EE.2 Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.		8.EE.2 Evaluate square and cube roots of small perfect squares and cubes (but do not simplify non perfect radicals)	Perfect squares Non- perfect squares
EE	EquationsWork with radicals and integer exponents.	8.EE.3 Use numbers expressed in the form of a single digit times a whole-number power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 times 10 ⁸ and the population of the world as 7 times 10 ⁹ , and determine that the world population is more than 20 times larger.		8.EE.3 Estimate very large or very small quantities as a single digit times a power of 10	standard notation scientific notation

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
EE	Expressions and EquationsWork with radicals and integer exponents.			8.EE.3 Compare estimations of very large or very small quantities when expressed as a single digit times a power of 10	standard notation scientific notation
EE	Expressions and EquationsWork with radicals and integer exponents.	8.EE.4 Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.	integer exponents	8.EE.4 Utilize scientific notation and choose units of appropriate size for measurements of very large or very small quantities	scientific notation
EE	Expressions and EquationsWork with radicals and integer exponents.	scientific notation, including problems where both	integer exponents scientific notation	8.EE.4 Perform operations with numbers expressed in scientific notation	
EE	Expressions and EquationsWork with radicals and integer exponents.		•	8.EE.4 Interpret scientific notation that has been generated by technology	

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
EE	connections between proportional relationships, lines, and linear equations.	8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	proportional relationships linear equations	8.EE.5 Graph proportional relationships	slope, proportional relationship (direct variation)
EE	connections between proportional relationships, lines, and linear equations.		proportional relationships linear equations	8.EE.5 Interpret the unit rate as the slope of the graph.	
EE	connections between proportional relationships, lines, and linear equations.	8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	proportional relationships linear equations	8.EE.5 Compare two different proportional relationships represented in different ways	
EE	Understand the connections between proportional relationships, lines,	8.EE.6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-	proportional relationships linear equations similarity	8.EE.6 Explain why slope is the same between 2 distinct points on a line using similar triangles	slope similar triangles
EE	connections between proportional relationships, lines,	8.EE.6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non- vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.	proportional relationships linear equations similarity	8.EE.6 Derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.	slope-intercept form y-intercept origin

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
EE	linear equations and pairs of simultaneous linear equations.	8.EE.7a Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers).		8.EE.7a Create examples of linear equations in one variable with one solution, no solutions or infinitely many solutions.	null infinite no solution consistent inconsistent
EE	linear equations and pairs of simultaneous	8.EE.7b Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.		8.EE.7b Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.	
EE	linear equations and pairs of simultaneous	8.EE.8a Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.	Equations	8.EE.8a Recognize that solutions to a system of two linear equations in two variables corresponds to points of intersection of their graphs.	system of equations point of intersection
EE	linear equations and pairs of simultaneous linear equations.	8.EE.8b Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3x + 2y = 5$ and $3x + 2y = 6$ have no solution because $3x + 2y$ cannot simultaneously be 5 and 6.	Simultaneous Equations	8.EE.8b Estimate the solutions of systems of two linear equations in two variables by graphing the equations.	
EE	linear equations and pairs of simultaneous linear equations.	8.EE.8b Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3x + 2y = 5$ and $3x + 2y = 6$ have no solution because $3x + 2y$ cannot simultaneously be 5 and 6.	Simultaneous Equations	8.EE.8b Solve systems of two linear equations in two variables algebraically.	

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
EE	linear equations and pairs of simultaneous linear equations.	8.EE.8b Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3x + 2y = 5$ and $3x + 2y = 6$ have no solution because $3x + 2y$ cannot simultaneously be 5 and 6.	Simultaneous Equations	8.EE.8b Solve simple cases of systems of two linear equations in two variables by inspection.	
EE	linear equations and pairs of simultaneous linear equations.	8.EE.8c Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.	Simultaneous Equations	8.EE.8c Solve real-world and mathematical problems leading to two linear equations in two variables.	
F	compare functions.	8.F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.1	Functions	8.F.1 Identify that a function is a rule that assigns to each input exactly one output.	Function Input Output Independent Dependent
F	Define, evaluate, and	8.F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.2	Functions	8.F.1 Recognize that a graph consisting of sets of ordered pairs, each with an input and the corresponding output is a function.	Domain Range
F	compare functions.	8.F.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	Functions	8.F.2 Compare properties of two functions each represented in a different way, including: algebraically, graphically, numerically in tables, or by verbal descriptions.	

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	Define, evaluate, and compare functions.	8.F.3 Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A = s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.	Functions	8.F.3 Determine whether a function is linear as written in the form y = mx + b	
F	Use functions to model relationships between quantities.	8.F.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	Functions	8.F.4 Calcuate the rate of change and the initial value of a function from a description of a relationship or from two (x, y) values, including a table or graph.	rate of change initial value
F	Use functions to model relationships between quantities.	8.F.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	Functions	8.F.4 Construct a function to model a linear relationship between two quantities.	
F	Use functions to model relationships between quantities.	8.F.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	Functions	8.F.4 Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	model relationships	8.F.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.		8.F.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph.	
F	•	8.F.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.		8.F.5 Construct a graph that exhibits the qualitative features of a function that has been described verbally.	
G	similarity using physical models, transparencies, or	· ·	reflections, translations of two-	8.G.1 Discover the properties of rotations, reflections, and translations.	rotations, translations, reflections lines line segments angles parallel lines
G	congruence and similarity using physical models, transparencies, or	reflections, and translations: a. Lines are taken to	reflections, translations of two-	8.G.1 Model that in rotations, reflections and translations, the image retains the same properties as the original figure.	transformation figure image
G	Understand congruence and similarity using physical models,	congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and	reflections,	8.G.2 Recognize that a pair of two-dimensional figures are CONGRUENT if one can be obtained from the first by a sequence of rotations, reflections, and translations.	congruent figures

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
G	Understand congruence and similarity using physical models, transparencies, or geometry software.	the first by a sequence of rotations, reflections, and	rotations, reflections, translations of two- dimensional figures	8.G.2 Given two congruent figures, describe a sequence that exhibits the congruence between them.	
G	Understand congruence and similarity using physical models, transparencies, or geometry software.	8.G.3 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	rotations, reflections, translations of two- dimensional figures	-	dilations, translations, rotations, reflections
G	Understand congruence and similarity using physical models, transparencies, or geometry software.	•	reflections,	8.G.4 Recognize that a pair of two-dimensional figures are SIMILAR if one can be obtained from the first by a sequence of rotations, reflections, translations, and/or dilations.	similar figures
G	Understand congruence and similarity using physical models, transparencies, or geometry software.			8.G.4 Given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	
G	Understand congruence and similarity using physical models, transparencies, or geometry software.	o i i	reflections, translations of two- dimensional figures	8.G.5 Justify facts about the angle sum and exterior angle of triangles.	angle sum; exterior angle

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
G	congruence and similarity using physical models, transparencies, or geometry software.	8.G.5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	reflections, translations of two- dimensional figures	8.G.5 Justify properties about the angles created when parallel lines are cut by a transversal.	transversal; parallel lines; vertical angles; corresponding angles; alternate interior angles; alternate exterior angles; consecutive interior angles
G	congruence and similarity using physical models, transparencies, or geometry software.	8.G.5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	reflections, translations of two- dimensional figures	8.G. 5 Justify that angle-angle-angle can be used as a criterion for similarity.	similar triangles
G		8.G.6 Explain a proof of the Pythagorean Theorem and its converse.	Pythagorean Theroem	8.G.6 Explain a proof of the Pythagorean Theorem and its converse.	Pythagorean Theorem, converse
G	the Pythagorean	8.G.7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	Pythagorean Theroem	8.G.7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	
G		8.G.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	Pythagorean Theroem	8.G.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
G	mathematical	8.G.9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.	Volume	8.G.9 Express and apply the formulas for the volumes of cones, cylinders, and spheres to solve real-world and mathematical problems.	
SP	Investigate patterns of association in bivariate data.	8.SP.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	scatter plot	8.SP.1 Construct scatter plots for two variables.	independent & dependent variables, bivariate measurement, positive, negative, and no association
SP	association in bivariate data.	8.SP.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	scatter plot	8.SP.1 Interpret scatter plots for two variables.	
SP	association in bivariate data.	8.SP.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	scatter plot	8.SP.1 Describe patterns in scatter plots.	
SP	association in bivariate data.	8.SP.2 Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	scatter plot	8.SP.2 Construct a line of best fit.	

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
SP	association in bivariate data.	8.SP.2 Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	scatter plot	8.SP.2 Informally assess a line of best fit.	line of best fit; also known as trend lines in science
SP	association in bivariate data.	8.SP.2 Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	scatter plot	8.SP.2 Derive the equation of a line of best fit.	
SP	association in bivariate data.	8.SP.3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.	scatter plot	8.SP.3 Explain what the slope of the line means in terms of the given data.	
SP	association in bivariate data.	8.SP.3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.	scatter plot	8.SP.3 Explain what the x and y intercepts of the line mean in terms of the given data.	

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
SP	Investigate patterns of association in bivariate data.	8.SP.4 Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?		8.SP.4 For a given set of data, organize frequencies and relative frequencies into two-way tables.	frequency; relative frequency
SP	Investigate patterns of association in bivariate data.	8.SP.4 Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?		8.SP.4 Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects.	

Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
SP	association in bivariate data.		frequency	8.SP.4 Calculate relative frequencies and apply these to determine possible association between the two variables.	